Highly efficient and stable lead-free cesium copper halide perovskites for optoelectronic applications: A DFT based study

نویسندگان

چکیده

Recently synthesized industrially significant perovskites Cs3Cu2X5 (X=Cl,Br,I) are subjected to a density functional theory (DFT) investigation utilizing the CASTEP code. This study explores various physical features, including structural, optical, thermodynamic, elastic, mechanical, and electronic properties. There is strong correlation between optimized structure parameters existing experimental data, which demonstrates reliability of our DFT-based computations. The band states (TDOS PDOS) analysis revealed that all studied direct gap semiconductors, Cs3Cu2Br5 has smallest (2.092 eV). We also discussed mechanical cell stability using Born criterion formation energy, respectively. dynamic each phase confirmed by elastic constants. According computed values Pugh's Poisson's ratios as well Cauchy's pressure, compounds ductile in nature. states, total charge density, Mulliken atomic populations reveal have complex bonding with both ionic covalent Finally, constant Debye temperatures Cs3Cu2Cl5, Cs3Cu2Br5, Cs3Cu2I5 been determined 82.90 K, 100.00 80.70 thermodynamics (relatively low ΘD Kmin) optical properties indicate investigated materials potential serve thermal barrier coating (TBC) materials.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications.

Herein, we describe simple, fast and reproducible halide ion exchange reactions in CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) at room temperature. Through the simple adjustment of the halide ion concentration, the photoluminescence of these NCs can be tuned over the entire visible region (425-655 nm). Photodetector devices based on entirely inorganic CsPbI3 NCs are demonstrated for the first tim...

متن کامل

Progress on lead-free metal halide perovskites for photovoltaic applications: a review

ABSTRACT Metal halide perovskites have revolutionized the field of solution-processable photovoltaics. Within just a few years, the power conversion efficiencies of perovskite-based solar cells have been improved significantly to over 20%, which makes them now already comparably efficient to silicon-based photovoltaics. This breakthrough in solution-based photovoltaics, however, has the drawbac...

متن کامل

Color-stable water-dispersed cesium lead halide perovskite nanocrystals.

Cesium lead halide perovskite nanocrystals are being lately explored for optoelectronic applications due to their emission tunability, high photoluminescence quantum yields, and narrow emission bands. Nevertheless, their incompatibility with polar solvents and composition homogenization driven by a fast anion-exchange are still important drawbacks to overcome. Herein we report on a successful e...

متن کامل

Excitons versus free charges in organo-lead tri-halide perovskites.

Excitonic solar cells, within which bound electron-hole pairs have a central role in energy harvesting, have represented a hot field of research over the last two decades due to the compelling prospect of low-cost solar energy. However, in such cells, exciton dissociation and charge collection occur with significant losses in energy, essentially due to poor charge screening. Organic-inorganic p...

متن کامل

Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)

Postsynthetic chemical transformations of colloidal nanocrystals, such as ion-exchange reactions, provide an avenue to compositional fine-tuning or to otherwise inaccessible materials and morphologies. While cation-exchange is facile and commonplace, anion-exchange reactions have not received substantial deployment. Here we report fast, low-temperature, deliberately partial, or complete anion-e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Heliyon

سال: 2023

ISSN: ['2405-8440']

DOI: https://doi.org/10.1016/j.heliyon.2023.e18816